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1 Stirling’s Approximation

Our objective is to prove the following result.

Theorem 1 (Stirling’s approximation, Robbins Formula [Rob55]).
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Before we proceed with the proof, I want to mention the following stronger conjectured bound that I
discovered (numerically); however, I was unable to prove this bound.
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Let us now proceed with the proof of Robbins formula.

Proof. Our objective is to prove tight upper and lower bounds of the form
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So, we shall obtain bounds of the form

2 (2)" - g(m) < nt < V2 (2)" - 1),

e

where

o) = (57
9(n) = exp (12n1+ 1) '

1. First, the idea is to prove that the following limit exists.
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2. Next, we prove that the following sequence is (weakly) increasing.

n!
{\/%(Z)nf(n)}ne,\,'

Since, this sequence also tends to L and is (weakly) increasing, we get that
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3. Similarly, if we prove that the following sequence is (weakly) decreasing

n!
{ \/ﬁ (%)ng(n) }nEN ’

then
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These high-level technique is used to derive several tight bounds of this form.
Part 1. Take a look at the video. Then, you can take a look at more formal presentations as well.

Part 2. Let us prove the following
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We substitute e = 1/(n + 1). Then, we have (n + 1) = 1/e, n = (1 —¢)/e and n + 1/2 = (1 — ¢/2)/e.
Therefore, the inequality is equivalent to
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It suffices to prove that, for all i > 2, we have
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Consider the function h(z) = I—}H — 5= over the domain z € [2,00). Our objective is to find its extreme
values. Observe that
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Note that 22% > (z 4+ 1)> = V2> 1+ 2, for all integer « > 3. Therefore, h(z) is decreasing in [3, c0).
For integer z > 2, the maximum is achieved at x = 2 or = 3. Note that h(2) = h(3) = 5. So, for
integer x, we have h(x) < % This observation completes the proof.

Part 3. Let us prove the following
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We substitute e = 1/(n + 1). Then, we have 12n + 13 = (12 +¢)/e and 12n + 1 = (12 — 11¢) /e. Therefore,
the LHS becomes
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https://www.youtube.com/watch?v=7PuZQhqkWxk

We know from the above derivation that the RHS is
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Therefore, for integer i > 2, it suffices to show that
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I leave this as an exercise. O
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